A study of wave forces on offshore platform by direct CFD and Morison equation

D. Zhang ¹ E. G. Paterson ²

Aerospace and Ocean Engineering Virginia Polytechnic Institute and State University

¹ liybzd@vt.edu ²egp@vt.edu

2nd Symposium on OpenFOAM in Wind Energy, Boulder CO, 2014

1 / 34

- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

2 / 34

Motivation

- Development of a "Cyber Wind Facility" capable of predicting transient loads and motions of an offshore turbine and floating platform operating in marine atmospheric boundary layer and ocean waves
 - Hydrodynamics and mooring-line dynamics are key considerations for this problem
- Current state-of-the-art engineering tools are based upon semi-empirical time-domain methods (e.g., Cummins equation)
 - Examples include: NREL's Hydrodyn, OrcaFlex, ANSYS AQWA
 - These models use various theories for radiation, diffraction, hydrostatics, and viscous effects.
 - Morison's equation is commonly used for damping and inertia forces due to wave excitation.
- Some floating platforms have complex underwater geometry (e.g., OC4 Semi-submersible), which precludes the use of theoretical or historical data for drag, inertia, damping, added mass, etc.

Objective of current study

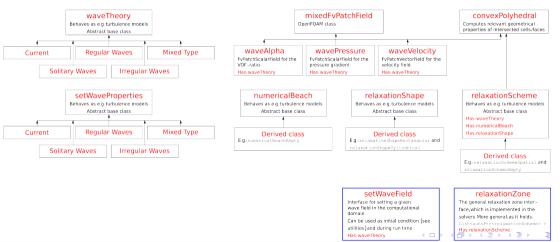
- Perform multi-phase RANS simulations of a fixed platform in waves (i.e., the diffraction-wave problem).
 - This is a precursor study prior to undertaking full 6DOF/RANS simulations, including mooring-line models
- Compare CFD computed wave-excitation forces for OC3 spar-buoy to Morison's equation model (using both CFD-based or experimental coefficients).

4 / 34

- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

Computational Model

- Tightly-coupled multiphase Navier-Stokes equations and Newton's 6DOF equation-of-motion. Following presentation by A. Dunbar will present details of algorithm.
- Wave generation using the waves2Foam library (Jacobsen et al., 2012).
- Mooring-line forces via catenary-line model.
- Selectable-fidelity model of the wind turbine, including actuator-disk and actuator-line models. ALM model developed by CWF team members, Prof. Schmitz and Pankaj Jha.
- Dynamic meshing using an Elliptic mesh-deformation model with variable stiffness, which maintains near-wall mesh quality (Campbell and Paterson, 2011).


6 / 34

Wave Library: waves2Foam

Library Structure: Waves theories, Boundary conditions, Relaxation techniques, Dictionaries, and Utilities.

libwayes2Foam.so

Wave Library: waves2Foam

- Common wave theories are implemented in waves2Foam
 - Potential current
 - Regular waves: Stokes 1st, 2nd and 5th order theory
 - Solitary wave
 - Irregular waves
- Boundary conditions apply wave theory to velocity, pressure, and volume-fraction fields.
- Relaxation zones provide numerical beaches for explicit and implicit damping of waves to control wave reflections
- Utilities are provided, e.g., setWaveField is similar to setFields for prescribing initial wave field to velocity and alpha fields.

- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- 5 Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

Floating platform geometry

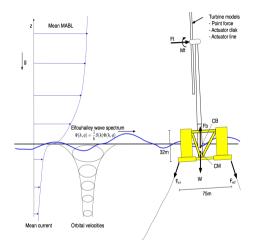


Figure: Schematics of Semi-Submersible platform with wind turbine in ocean waves and currents(Popko, et al., 2012)

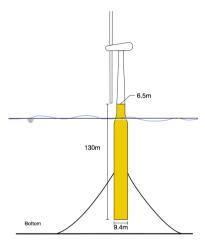
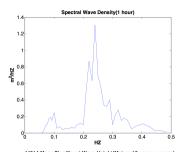
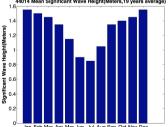


Figure: Schematics of OC3-Hywind spar buoy with wind turbine in ocean waves and currents (Jonkman, 2010)


- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

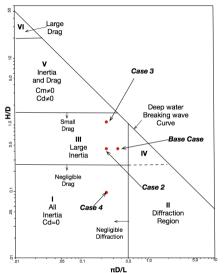

Flow conditions

Statistical data from National Data Buoy Center(NDBC)

- Close to research area of Virginia Offshore Wind Technology Advancement Project(VOWTAP).
- Real time data updated every 1 hour
- Historical data in the last two decades including
 - Standard meteorological data
 - Continuous winds data
 - Spectral wave data
 - Ocean current data

Flow conditions

Chart (Chakrabarti 1987) with summary of four cases and dominant physics.

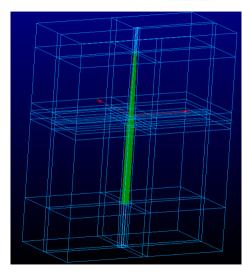

First-order Stokes' wave:

• Base case: H=3m, L=60m

• Case 2: H=3m, L=90m

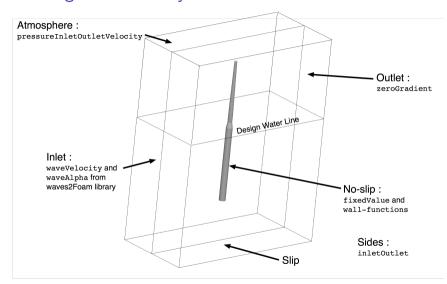
• Case 3: H=7m, L=90m

• Case 4: H=0.65m, L=90m



- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

Meshing and boundary conditions



- Mesh generated using Pointwise.
- Buoy+tower system is very tall: buoy depth of 120m, hub-height of 90m.
- Domain size
 - -120m < x < 120m
 - $-60m \le y \le 60m$
 - -180 m < z < 120 m
- Near-wall resolution: 1cm (very coarse)
- Uniform axial spacing upstream of buoy for resolving waves
- Vertical clustering around DWL design water line

Meshing and boundary conditions

Computational parameters

- Finite volume schemes
 - limited schemes used to improve stability
 - cellLimited Gauss linear for gradSchemes of U and alpha1
 - Convection schemes used in divSchemes sub-dictionary
 - Gauss linearUpwindV for momentum equation
 - Gauss vanLeer for VOF equation
 - Gauss interfaceCompression for interface sharpening
 - Gauss upwind for turbulence models
- Finite volume solvers
 - GAMG with the DIC smoother for pressure-Poisson equation
 - PBiCG for all other equations
- PISO algorithm control
 - nCorrectors 3:
 - nNonOrthogonalCorrectors 1;
 - nAlphaCorr 1;
 - nAlphaSubCycles 1;
 - cAlpha 1;

- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

High-Performance Computing Resources

- Advanced Research Computing (ARC) at Virginia Tech
 - BlueRidge: 318-node Cray CS-300 cluster, each node is outfitted with two octa-core Intel Sandy Bridge CPUs and 64GB memory.
 - Hokiespeed: GPU-accelerated cluster with 204 nodes. Each nodes has 24GB memory, two six-core Xeon E5645 CPUs with two NVIDIA M2025/C2050 GPU.
 - Each user can request up to 1024 cores on Blueridge and 384 cores on Hokiespeed.
 - Maximum run time in normal queue is 144 hours and 72 hours respectively.
- We currently use foam-extend-3.0. Have used OpenFOAM 2.2 and 2.3, but recent bugs have caused concern in using these versions.
- For mesh of 5M cells, execution time less than 3 hours on 96 processors for 120 seconds of physical time (approx 10-15 wave encounters).

- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

Free-surface wave-elevation contours

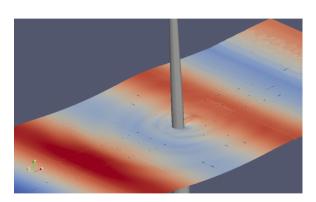


Figure: Wave elevation on free surface (H=7m, L=90m)

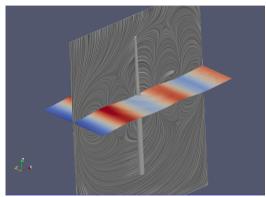
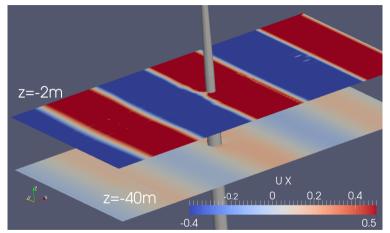
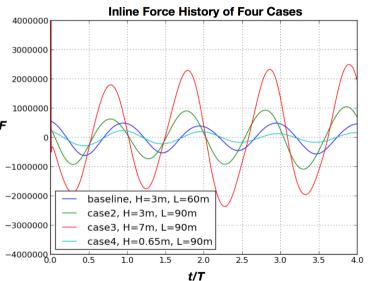



Figure: Wave elevation on free surface with wave-induced circulations in y-plane (H=7m, L=90m)

Unsteady velocity field vs. depth

For reference, velocity field of 1st-order Stokes wave


$$u(x, t) = \omega A \exp^{kz} \cos(kx - \omega t)$$

$$w(x, t) = \omega A \exp^{kz} \sin(kx - \omega t)$$

Figure: Variation of flow velocity in x-direction with depth (H=7m, L=90m)

Unsteady inline force

- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

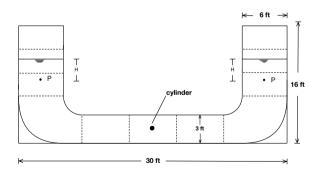
Wave force theory

Morison's equation for circular cylinder

$$F = \frac{\pi}{4} C_m \rho D^2 \frac{\partial U}{\partial t} + \frac{1}{2} C_d \rho DU \mid U \mid$$

$$U = U_m \sin(\omega t)$$

- F is the inline force; C_m and C_d are the inertial and drag coefficient
- C_m and C_d are functions of Keulegan-Carpenter number $K=U_mT/D$ and Reynods number $Re=U_mD/\nu$
- It's a empirical approach, a vast range of experimental data on C_m and C_d is available from numerous lab and field tests
- Provides acceptable and reliable prediction of wave force on many offshore structures.


Experimental data (Sarpkaya, 1976)

Sarpkaya (1976) conducted a series of experiments in a U-shape water tunnel to study the hydrodynamic force on different size cylinders in various flow conditions

- Period T = 5.5s
- 7 cylinders with diameters ranging from 2 to 6.5 inches were used

U-Shape water tunnel (Sarpkaya 1976)

Experimental data (Sarpkaya, 1976)

WirginiaTech

- Frequency parameter $\beta = Re/K = \frac{D^2}{\nu T}$
- For small K, C_m converges to 2
- $m{\circ}$ C_m drops to minimum and C_d reaches maximum at Kpprox 15

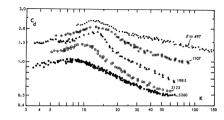


Figure : C_d versus K for various values of β

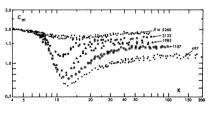


Figure : C_m versus K for various values of

Experimental data (Sarpkaya, 1976)

- Sarpkaya(1976) also studied the force on cylinders at high Reynolds number.
- We can observe from the figures that at high Re, C_m approaches 1.8 and C_d approaches 0.65 at various values of K.

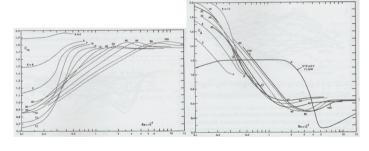
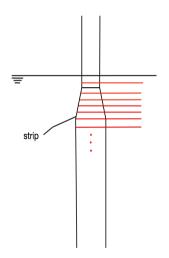
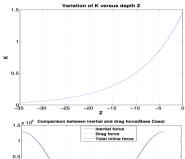



Figure : $C_m(left)$ and $C_d(right)$ versus Re for various values of K

Application to 3D using Strip Theory I

- Water particle velocity is derived from linear wave theory
- Reynolds number along the vertical length of the pile ranges from 10^7 near free surface to 10^5 at wave base.
- We assume $C_m = 1.8$ and $C_d = 0.65$

29 / 34


Application to 3D using Strip Theory II

 By assuming linear theory, we have the ratio between inertial and drag force:

$$\frac{f_{D_{max}}}{f_{I_{max}}} = \frac{C_d}{\pi^2 C_M} K \approx 0.036 K$$

- For wave amplitude of 1.5m in the base case, even for highest $K \approx 1.5$, we have $\frac{f_{D_{max}}}{f_{l_{max}}} = 5.3\%$
- Drag force is negligible compared with inertial force.

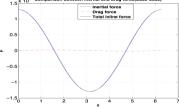


Figure : Inline force history of the base case in one cycle

Comparison of CFD and Strip Theory

Average peak force:

	Base	Case 2	Case 3	Case 4
CFD	5e5	1e6	2.5e6	2e5
Morison's equation	1.25e6	1.4e6	3.3e6	3.1e5

Two possible reasons for the difference:

- Lack of full-scale coefficients and the uncertainty of extrapolation from model scale
- Numerical uncertainties in CFD and lack of grid–dependence study

Prognosis for accurate prediction using Morison's equation for complex geometry is poor

- Introduction
- 2 CWF Hydrodynamics Module
- Geometry
- 4 Flow conditions
- 5 Meshing, boundary conditions, and computational parameters
- 6 High-Performance Computing Resources
- CFD Results
- Morison's Equation and Strip Theory
- Onclusions and Future Work

Conclusions

- The "Cyber-Wind Facility" Hydrodynamics Module has been used for several different applications.
 - 2D simulation of KC problem for Morrison's equation coefficients at model scale for comparison to Sarpkaya (1976) [not discussed].
 - Simulation of OC3 spar-buoy in waves using interFoam and waves2Foam. Conditions set to
 H_s typical for future offshore-wind-plant near the coast of Virginia.
- Diffraction-wave loads (i.e., fixed platform) compared to strip-wise application of Morison's equation. Agreement is poor.
- Hypothesis for discrepancy is that full-scale coefficients are unknown, and CFD accuracy not yet assessed using domain-size, and time-step and grid refinement studies.
- Use of robust HPC resources at VT-ARC give good turn-around. Many cases can be simulated in 24-hour period.

Future Work

- Re-mesh for larger domain which includes rotor disc.
- Compute Morison's equation coefficients at full–scale conditions, and quantify 3D and scale effects.
- Test and debug mooring-line model
- Collaborate with CWF team members
 - Use A. Dunbar's tightly coupled 6DOF/RANS solver
 - Incorporate S. Schmitz and P. Jha ALM for turbine forces
- Extend waves2Foam for directional spectrum and short-crested wave model (e.g., Elfouhailey, et al., 1997)
- Write and defend PhD dissertation (December 2015)